Поразительные животные, обитающие на островах. Островной закон задаёт габариты для подводных жителей Фантастический листохвостый геккон

Со времён Дарвина известна закономерность "правило островов": если животных поселить на изолированном острове, они со временем сменят размеры - большие станут маленькими и наоборот. А недавно выяснилось, что если морское существо "отправить" на ПМЖ поглубже, то будет тот же самый эффект.

Про возможность такого немного странного хода эволюции биологи хорошо знают. Например, мамонты на Нормандских островах, отделённые от остального мира, развились в совершенно новый вид, ставший таким "миниатюрным", что вес его особей составлял всего одну десятую от веса их сородичей на материке.

Есть и противоположный случай – землеройки на некоторых Карибских островах. Со временем эти крошечные грызуны развились в тридцатисантиметровых "монстров".

Все эти примеры подтверждают: да, на островах большие существа уменьшаются, а маленькие растут.

В последние десятилетия такую тенденцию называют в биологии островным правилом. Беда только в том, что учёные считают вопрос о применимости этого правила спорным, как и о его основаниях.

К примеру, причиной уменьшения может быть борьба за существование, которую начинают вести животные в условиях недостатка пищи и территории. С другой стороны, и увеличение габаритов может оказаться преимуществом, особенно если на острове проживают хищники, меньшие по размерам.

Понятно, что подобные факторы оказывают влияние на эволюцию, но как именно, и каким должно быть их сочетание – это отдельный непростой вопрос.

Но, похоже, что дело не только в межвидовой борьбе. Так, сотрудник научно-исследовательского института бассейна Монтерей (Monterey Bay Aquarium Research Institute - MBARI) Крэг Макклейн (Craig R. McClain) предположил, что схожая тенденция может существовать и в других отграниченных от окружающего мира местах, в частности, глубоко под водой.

На проходящем в эти дни симпозиуме по глубоководной биологии (11th International Deep-Sea Biology Symposium) он представил результаты своего исследования (PDF-документ, 156 килобайт), в котором применил островное правило к подводным улиткам.

Будучи морским биологом, Макклейн заинтересовался вопросом, почему глубоководные жители эволюционируют в виды, которые существенно отличаются по размерам в ту или иную сторону от своих мелководных родственников. Но научная литература не проливала свет на загадку, а предлагаемые теории противоречили друг другу. Пришлось разбираться самостоятельно.

Вот Крэг и пришёл к гипотезе, что механизм может быть таким же, как в случае с островами, ведь морские жители периодически "захватывают" глубины (как это делают животные, "колонизирующие" острова).

Чтобы проверить правильность своей идеи, Макклейн вместе с коллегами решили сравнить размеры водных улиток, обитающих у поверхности и на дне.

Подошли к делу они, надо сразу сказать, чрезвычайно добросовестно. Чтобы получить статистически достоверные данные, они проанализировали данные о тысячах улиток Атлантического океана, используя специально созданную для этого базу данных. И разные статистические методы, которые применяли исследователи, привели к одинаковым результатам.

Выяснилось, что если мелководные улитки были размером менее 12 миллиметров, то они, в основном, имели более крупных глубоководных родственников; если же они были больше 20, то их подводные родичи были маленькими. Как полагает Макклейн, "эти улитки эволюционировали так, чтобы их размер был компромиссным по отношению к разным давлениям".

В целом, гипотеза подтвердилась – улитки глубоко под водой адаптируются по такому же принципу, как и животные на островах. Но теория Макклейна ничего не говорит об особенностях отдельных видов, попадающих в такую изоляцию. Кроме того, очевидно, далеко не всё, применимое для водных жителей, подходит для сухопутных животных.

Зато команда Макклейна смогла определить основной фактор, уменьшающий крупных улиток под водой: это действительно еда, которой им недостаёт. То же относится и к маленьким: на дне они очень мобильны, и им, напротив, легче найти для себя необходимое пропитание.

Крэг считает, что учёным, исследующим наземных животных, следует придавать большее значение факторам, определяющим "включение" островного правила, в особенности, при нехватке пищи.

Что же касается самого доктора Макклейна, то он хочет продолжить свои исследования "подводного островного правила" и надеется подключить к работе специалистов по другим морским животным.

Мадагаскар является домом для некоторых уникальных и необычных видов фауны. На острове обитает почти 25000 видов диких животных, при этом многие из них находятся под угрозой исчезновения. За последние 2000 лет, биологически богатые леса Мадагаскара были сокращены почти на 90%, в основном за счет сельского хозяйства и других коммерческих видов деятельности, таких как лесозаготовка.

Массовое привело к тому, что несколько островных животных оказались на грани исчезновения. Лемуры, которые населяют исключительно Мадагаскар, являются наиболее подверженными опасности и перечислены в Красном списке угрожаемых видов. Бамбуковый лемур, названный в честь его любимой пищи, находится под угрозой исчезновения, потому что его среда обитания сократилась до 4% от первоначальной.

Мадагаскар находится в Индийском океане на юго-восточном побережье Африки, и является 4-м по величине островом в мире. Это место, где преобладают эндемичные виды животных и растений, которые больше нигде в мире не встречаются. Остров был изолирован в течение нескольких миллионов лет, что дало возможность животным и растениям эволюционировать и диверсифицироваться на небольшой територии.

Около 170 миллионов лет назад Мадагаскар был территорией в составе континента Гондван, не имеющей выхода к морю. В результате движения земной коры Мадагаскар и Индия отделились от Южной Америки и Африки, а затем от Антарктиды и Австралии. Около 88 млн лет назад, Индия также отделилась от Мадагаскара, что позволило животным на острове развиваться в относительной изоляции.

Лемуры

Лемуры - приматы, которые выглядят как животное похожее на собаку, кошку и белку. Они демонстрируют невероятно уникальное и захватывающее поведение, включая пение, напоминающее звуки китов. Сегодня на Мадагаскаре насчитывается более тридцати видов лемуров, размер которых варьируется от 25 г карликового мышиного лемура до самого большого индри лемура весом более 12 кг. Лемуры являются одним из наиболее угрожаемых животных на всей планете, и согласно Красному списку МСОП, находятся под угрозой исчезновения, а именно: 22 вида находятся в критическом положении; 48 видов являются вымирающими, а 20 - уязвимы.

Фосса

Фосса обитает в лесах Мадагаскара и является близким родственником мангустов. Она вырастает до 1,8 м в длину от хвоста до носа и весит до 12 кг. Животное имеет стройное тело и больше похоже на представителя , чем мангустовых. Фосса использует длинный хвост, чтобы быстро перемещаться по деревьям. Животное относится к числу видов, находящихся под угрозой исчезновения, и перечислено в Красном списке МСОП, в силу того, что их места обитания сокращаются. Сегодня сохранилось менее 10% первоначального лесного покрова Мадагаскара, который также является единственным домом фоссы.

Мадагаскарская комета

Мадагаскарская комета (Argema Mittrei ) - одна из самых красивых бабочек в мире, найденная только на Мадагаскаре. Размах крыльев может достигать 20 см. Насекомое имеет ярко-желтый цвет и длинные "хвостики"на нижних крыльях. Самки шире, а их крылья круглые, хвост короче, чем у самцов. До сих пор эти прекрасные животные не имеют статуса защиты, а численность их популяции не установлена.

Пантерный хамелеон

Пантерный хамелеон является эндемичным для Мадагаскара и других близлежащих островов. Он имеет самый разнообразный окрас среди всех хамелеонов и наиболее востребован среди торговцев рептилиями. Как и других хамелеонов, у пантерного хамелеона есть поднятая затылочная часть. Во время охоты он использует свой язык с ловчей присоской на конце. Этот вид находится под наименьшей угрозой исчезновения.

Фантастический листохвостый геккон

Фантастичекий листохвостый геккон (Uroplatus Phantasticus ) - потрясающая рептилия, которая может замаскироваться в своей окружающей среде. Его тело похожее на мертвые листья, что помогает животному прятаться от хищников. Геккон покрыт узорчатой кожей, а хвост выглядит так, будто его погрызли насекомые. Все эти особенности помогают хорошо вписываться в окружающую листву. Фантастичекие листохвостые гекконы широко варьируется в окрасе, но в основном они коричневатые с некоторыми пятнами на брюхе, что отличает их от других подобных видов.

Это ночные рептилии с большими глазами, которые подходят для охоты на насекомых в темноте. У них также есть клейкие чешуйки под пальцами и сильные когти, позволяющие быстро перемещаться по деревьям. Гекконы живут в определенной среде обитания и не терпимы к каким-либо изменениям. Из-за своего внешнего вида листохвостые гекконы является любимыми домашними животными и относятся к одним из самых продаваемых видов. В последнее время в дикой природе наблюдается снижение численности популяции.

Лягушка-помидор

Также известные как томатные узкороты, эти лягушки встречаются только на Мадагаскаре, главным образом в северо-западной части острова. Как правило, они ведут наземный образ жизни и распространены в лесных районах. Из-за обезлесения их среда обитания была разрушена, но, по-видимому, они хорошо адаптируются к измененным условиям и могут встречаться в садах и на плантациях.

Существует три вида лягушек-помидор: Dazzophus antongilli , Dyscophus guineti и Dyscophus insularis . Из трех, D.antogilli находится под угрозой исчезновения из-за обезлесения и отлова для содержания в качестве домашнего животного. Эти лягушки спариваются во время сезона дождей, на небольшой глубине и медленно движущейся воде. Они ярко окрашены и могут выделять неприятное вещество при угрозе, хотя оно не токсичное, но может раздражать слизистую оболочку.

Красный фуди

Также имеет название мадагаскарский фоди, эта птица является родной для Мадагаскара и других близлежащих островов, таких как Коморские острова, Сейшельские Острова и Маврикий, и в последнее время вид был обнаружен далеко на Аравийском полуострове. Они вырастают примерно до 12,5-13,5 см и весят около 14-19 г. У самцов есть яркое оперение на груди и голове, а крылья, хвост и область вокруг глаз имеют темные перья. Оперение широко варьируется от оранжевого до желтоватого, а во время размножение самцы линяют и их окрас становится оливково-коричневым, как у самок. Вид находится под наименьшей угрозой исчезновения.

Мадагаскарский шипящий таракан

Мадагаскарский шипящий таракан является одним из самых увлекательных эндемичных видов животных на острове. Он имеет овальную форму и блестящее коричневое тело без крыльев, но с парой поднятых рожков у самцов. Во время конфликтов эти насекомые шипят, благодаря чему и получили свое название. В отличие от большинства насекомых, которые создают шум, с помощью частей тела или вибрации, мадагаскарский таракан шипит благодаря резкому сокращению брюшка, а воздух проходит через дыхальца. Насекомые могут жить от двух до пяти лет и вырастать до 5-7 см в длину.

Мадагаскарская руконожка

Мадагаскарская руконожка - это ночной примат, живущий преимущественно на деревьях. Их большие пальцы и длинные хвосты позволяют им удобно держаться на деревьях, пока они используют свою эхолокацию, чтобы найти пищу, такую как насекомые. Они также имеют чувствительные большие уши и глаза, которые помогают им находить пищу. Из-за их причудливой внешности они считались плохим предзнаменованием среди местных жителей Мадагаскара. Вид находится на грани вымирания.

Мадагаскарская длинноухая сова

Эта птица имеет длину тела около 50 см, что делает ее самой большой совой на острове. Самки обычно больше, чем самцы. Сова характеризуется коричневатой короной на верхней части головы. Она также имеет коричневый лицевой диск. Мадагаскарская сова в основном ведет ночной образ жизни. Вид находится под наименьшей угрозой исчезновения.

Полосатый тенрек

Полосатый тенрек распространен в низинных северной и восточной частей Мадагаскара. Животное имеет длинную остроконечную морду, рудиментарный хвост и конечности. Морда черная с желтыми полосками, а тело покрыто колючками. Полосатый тенрек активен как днем, так и ночью и питается в основном насекомыми. Длинная морда в предназначена в основном для того, чтобы рыть землю в поисках добычи. Они также могут питаться червями, маленькими рыбами и даже лягушками. Тенреки в основном размножаются в октябре и декабре в зависимости от наличия пищи. Период беременности составляет 58 дней, и самка может привести до восьми детенышей. Вид вызывает наименьшие опасения.

Чёрная мантелла

Известная как Mantella madagascariensis , чёрная мантелла - яркая лягушка с зеленым, черным, желтым или оранжевым цветом. Вид встречается только в восточной и центральной частях Мадагаскаре. Эти лягушки обитают в тропических лесах, граничащих с пресноводными водоемами. Они могут переносить умеренную температуру между 24º С и 27º С в течение дня и немного ниже ночью. Чёрная мантелла - хищное животное, которое в основном питается насекомыми. Лягушки активны в течение дня, как правило, занимая небольшие территории. Яркий цвет тела действует как предупреждение об опасности для любого хищника. Вид находится в уязвимом положении.

Вопрос исследования. У видов животных, оказавшихся изолированными на островах, в ходе эволюции
часто происходят изменения размера тела, причем как в сторону увеличения
(гигантский мальтийский лебедь), так и в сторону уменьшения (карликовый
мальтийский слон). Какие факторы позволяют предсказать, вырастет ли организм
в ходе такой эволюции или уменьшится? Какие еще наземные и водные биотопы
демонстрируют аналогичный эволюционный эффект? Почему этот эффект чаще
всего распространяется на животных, а не на другие живые организмы?

Цели исследования.

Провести анализ необходимой литературы;
Проанализировать факторы, помогающие предсказать изменение размера
организма;
Исследовать различные биотопы и найти те, что демонстрируют аналогичный
эволюционный эффект;
Проанализировать причины, по которым этот эволюционный эффект чаще

Гигантский лебедь и карликовый слон

ГИГАНТСКИЙ ЛЕБЕДЬ И
КАРЛИКОВЫЙ СЛОН
C
Какие факторы способствуют изменению размера организма?

Островной гигантизм и островная карликовость.

Гигантизм (на островах)
проявляется при
отсутствии ограничений,
то есть при изобилии
пищи, отсутствии
природных врагов,
конкурентов.
Карликовость (на
островах) проявляется
при наличии
ограничений, то есть
при недостатке пищи,
при наличии природных
врагов, конкурентов.
Также на размеры
может влиять климат и
тип местности.

Биотопы, в которых наблюдаются изменения размеров организмов.

БИОТОПЫ, В КОТОРЫХ
НАБЛЮДАЮТСЯ ИЗМЕНЕНИЯ
РАЗМЕРОВ ОРГАНИЗМОВ.
C
Моря и океаны ∙ Леса ∙ Степи ∙ Саванны ∙ Пустыни и ледяные пустыни

Моря и океаны.

Под воздействием давления
Изменение веса под водой

Леса.

«Гиганты»

Леса.

«Карлики»

10. Степи.

«Карлики»
«Гиганты»

11. Саванны.

«Гиганты»

12. Саванны.

«Карлики»

13. Пустыни и ледяные пустыни.

Пустыни
Ледяные пустыни

14. Почему этот эффект чаще распространяется на животных?

ПОЧЕМУ ЭТОТ ЭФФЕКТ ЧАЩЕ
РАСПРОСТРАНЯЕТСЯ НА
ЖИВОТНЫХ?
C

15.

Немало важны в
возникновений мутаций
следующие факторы:
1.
Смена поколений
2.
Наличие
ограничений
3.
Подвижность
Например, те же
растения неподвижны,
малая смена
поколений. Растут же
данные организмы в
течение всей жизни.
Животные же наоборот
– подвижны, частая
смена поколений, рост
ограничен, от чего
конечный размер
организма и зависит.

16. Результаты исследования.

Проведён анализ необходимой литературы;
Проанализированы факторы, помогающие предсказать изменение размера
организма;
Исследованы различные биотопы и найдены те, что демонстрируют аналогичный
эволюционный эффект;
Проанализированы причины, по которым этот эволюционный эффект чаще
воздействует на животных, а не на другие живые организмы.

17. Вывод.

На первый взгляд
эволюция кажется
непредсказуемым,
удивительным
явлением, но
проанализировав
различные
факторы, условия, в
которых живут
организмы, можно
выстроить
некоторые прогнозы
и предположить, как
изменится данный
организм.

18. Список литературы.

Raia, P.; Meiri, S. (2006). «The island rule in large mammals: paleontology meets
ecology»
Шилов И. А. «Экология»
Биотоп // «Биологический энциклопедический словарь» глав. ред. М. С. Гиляров.

Со времён Дарвина известна закономерность «правило островов»: если животных поселить на изолированном острове, они со временем сменят размеры — большие станут маленькими и наоборот. А недавно выяснилось, что если морское существо «отправить» на ПМЖ поглубже, то будет тот же самый эффект.

Про возможность такого немного странного хода эволюции биологи хорошо знают. Например, мамонты на Нормандских островах, отделённые от остального мира, развились в совершенно новый вид, ставший таким «миниатюрным», что вес его особей составлял всего одну десятую от веса их сородичей на материке.

Есть и противоположный случай – землеройки на некоторых Карибских островах. Со временем эти крошечные грызуны развились в тридцатисантиметровых «монстров».

Все эти примеры подтверждают: да, на островах большие существа уменьшаются, а маленькие растут.

В последние десятилетия такую тенденцию называют в биологии островным правилом. Беда только в том, что учёные считают вопрос о применимости этого правила спорным, как и о его основаниях.

На этом рисунке схематично показано, как на острове меняются животные после изоляции: крупные (например, слоны) уменьшаются, а мелкие (скажем, землеройки) становятся больше (иллюстрация MBARI).

К примеру, причиной уменьшения может быть борьба за существование, которую начинают вести животные в условиях недостатка пищи и территории. С другой стороны, и увеличение габаритов может оказаться преимуществом, особенно если на острове проживают хищники, меньшие по размерам.

Понятно, что подобные факторы оказывают влияние на эволюцию, но как именно, и каким должно быть их сочетание – это отдельный непростой вопрос.

Но, похоже, что дело не только в межвидовой борьбе. Так, сотрудник научно-исследовательского института бассейна Монтерей (Monterey Bay Aquarium Research Institute — MBARI) Крэг Макклейн (Craig R. McClain) предположил, что схожая тенденция может существовать и в других отграниченных от окружающего мира местах, в частности, глубоко под водой.

Эта иллюстрация демонстрирует, как «островное правило» подчиняет себе глубоководных и мелководных улиток. На глубине крупные эволюционируют в маленькие, и наоборот. Практически то же самое, что и со слонами и мышами (иллюстрация MBARI).

На проходящем в эти дни симпозиуме по глубоководной биологии (11th International Deep-Sea Biology Symposium) он представил результаты своего исследования (PDF-документ, 156 килобайт), в котором применил островное правило к подводным улиткам.

Будучи морским биологом, Макклейн заинтересовался вопросом, почему глубоководные жители эволюционируют в виды, которые существенно отличаются по размерам в ту или иную сторону от своих мелководных родственников. Но научная литература не проливала свет на загадку, а предлагаемые теории противоречили друг другу. Пришлось разбираться самостоятельно.

Вот Крэг и пришёл к гипотезе, что механизм может быть таким же, как в случае с островами, ведь морские жители периодически «захватывают» глубины (как это делают животные, «колонизирующие» острова).

В правой части этой фотографии три панциря средних мелководных улиток. Три едва заметные точки у верхнего конца линейки — панцири глубоководных улиток-родственников (фото Craig McClain).

Чтобы проверить правильность своей идеи, Макклейн вместе с коллегами решили сравнить размеры водных улиток, обитающих у поверхности и на дне.

Подошли к делу они, надо сразу сказать, чрезвычайно добросовестно. Чтобы получить статистически достоверные данные, они проанализировали данные о тысячах улиток Атлантического океана, используя специально созданную для этого базу данных. И разные статистические методы, которые применяли исследователи, привели к одинаковым результатам.

Выяснилось, что если мелководные улитки были размером менее 12 миллиметров, то они, в основном, имели более крупных глубоководных родственников; если же они были больше 20, то их подводные родичи были маленькими. Как полагает Макклейн, «эти улитки эволюционировали так, чтобы их размер был компромиссным по отношению к разным давлениям».

Доктор Крэг Макклейн: «Одна из проблем наших исследований в том, что мы не можем проводить эксперименты. Поэтому всё, что нам остаётся – собирать как можно больше данных» (фото с сайта mbari.org).

В целом, гипотеза подтвердилась – улитки глубоко под водой адаптируются по такому же принципу, как и животные на островах. Но теория Макклейна ничего не говорит об особенностях отдельных видов, попадающих в такую изоляцию. Кроме того, очевидно, далеко не всё, применимое для водных жителей, подходит для сухопутных животных.

Гарри Грэхем

Для двух наиболее известных личностей , и Альфреда Уолласа, исследование животных на островах сыграло важную роль в развитии их эволюционных идей.

Для эволюционистов любые наблюдаемые в популяциях изменения - это уже хорошая новость. Но давайте разберемся, демонстрирует ли правило островов некие эволюционные изменения, которые образовали биологов из бактерий на протяжении миллионов лет? Как показали креационисты, многообразие видов нельзя считать доказательством эволюции новых родов животных. Видообразование возникает в результате взаимодействия наследственного генетического разнообразия и естественного отбора и дает возможность популяциям животных приспосабливаться к изменяющемуся окружению или климату. Такая область как изучает границы между сотворенными родами организмов, и помогает нам понять ограниченную, но всё, же ценную роль, которую играет видообразование в биологическом разнообразии.

Давайте более подробно рассмотрим, что же показывает правило островов, когда у изолированных популяций наблюдаются изменения. Схема ниже показывает, как может уменьшиться размер большого слона или как размер землеройки наоборот может увеличиться. Когда образуют изолированные популяции на разной глубине, у них также могут происходить изменения в размере по типу правила островов.

Обратите внимание на нечто очень важное в изменениях, которые происходят в изолированных популяциях. Когда крупный слон попадает на изолированный остров, он становится меньше в размере, а размер маленькой землеройки наоборот становится больше. Но слон всё равно остается слоном, а землеройка остается землеройкой . Нет абсолютно никакого намека на то, что наблюдаемые в правиле островов изменения когда-либо образуют новое животное. Совершенно нелепо использовать правило островов как доказательство эволюции, требующей образование новой генетической информации, увеличении генетической сложности и разнообразия. Всего этого просто не происходит!

Давайте на минуту представим себе, что происходит со слоном. Генетическая изменчивость слона с самого начала включает отличия в размере. Любая популяция слонов включает особей всех размеров – от больших слонов до маленьких. Если слона поместить в такую ограниченную среду обитания, как остров, давление отбора на протяжении нескольких поколений постепенно может привести к уменьшению среднего размера слонов. Решающими факторами для стада слонов определенного размера являются ограничения в еде и, возможно, в пространстве. Гены, которые определяют меньший размер слонов, уже заложены в них, но они были отобраны отбором потому, что меньший размер слонов больше способствует их выживанию на острове. Существует также возможность того, что мутации могут вызвать задержку роста, например, через снижение образования гормона роста.

Но что бы произошло, если бы гены, необходимые для крупного размера, утратились в этой изолированной популяции? Была бы в таком случае генетика популяции слонов более разнообразной? Конечно, нет! С точки зрения генетики, популяция бы просто истощилась. В действительности популяция слонов была бы подвержена вымиранию, если бы она покинула остров или если бы на него вторгся более крупный хищник. Маленький генетический фонд слонов сделал бы их менее способными адаптироваться к изменениям окружающей среды. Можем ли мы в таком случае сделать вывод, что генетическая утрата, местное снижение генетического многообразия и отсутствие увеличения сложности являются доказательством того, что вся жизнь на земле образовалась благодаря дарвиновской эволюции? Нет!

Землеройка

То же самое можно сказать и о землеройке. В генах маленькой землеройки уже заложены колебания в размере. Хищническое истребление или другие факторы давления на континенте могут проводить отбор меньшего размера в популяции в целом. Переместите нескольких особей на остров, и изолированная популяция может стать больше, так как больший по размеру тип может лучше подойти для окружающих условий. Вероятно, отсутствие хищников и борьба за пищу приведут к изменению размера. Но эволюция? Мы снова видим, как снижается генетическое разнообразие и не происходит никакого увеличения сложности. Задействованы уже существующие гены . Землеройки всё равно остаются землеройками, так как землеройки продолжают рождать еще больше землероек. Никакой эволюции от молекулы к человеку не происходит. Заложенное в генах разнообразие и естественный отбор изменяют морфологию популяции, но на самом деле не создают ничего нового. И если вернуть слонов или землероек в условия обитания на континенте до того, как навсегда утратится их генетическая разновидность, они, скорее всего, вернутся к своему первоначальному размеру.

Случаи из реальной жизни, которые подтверждают эту точку зрения, можно легко рассмотреть в классических эволюционных примерах. Чарльз Дарвин использовал видообразование вьюрков (зябликов) с Галапагосских островов как свидетельство «эволюции». Но он не смог понять, что изменения внутри популяции происходят в одну и другую сторону вместе с изменениями климатических условий, и никакого общего эволюционного развития фактически нет. Подобным образом, известная пяденица берёзовая, которую часто демонстрируют как «эволюцию в действии», показывает лишь то, как хорошо популяции пядениц могут приспосабливаться к условиям окружающей среды (не говоря уже о том, что исследования проходили поэтапно!).

Известный палеонтолог-эволюционист, покойный Стивен Джей Гоулд, использовал «принцип географической изоляции», или правило островов для того, чтобы разрабатывать собственные идеи об эволюционных процессах, которые он положил в основу своей концепции «прерывистого равновесия». Он ошибочно предположил, что основная часть эволюции на протяжении всей истории происходила быстрыми изменениями в изолированных популяциях. Он считал острова «огромными лабораториями эволюции» , которые являются движущими силами биологической радиации (распространения). В 1996 году он писал: « … эволюционные события сконцентрированы в эпизодах разветвляющегося видообразования внутри маленьких, изолированных популяций» .

Но как это возможно? Как показали представленные выше примеры, правило островов является более подходящим объяснением вымирания организмов, чем «эволюционной» радиации. Как ни странно, в очерке исследования сухопутных улиток, обитающих на таитянском острове Муреа, Гоулд сообщил, что они вымерли в 1960-х годах после того, как в эту область были завезены хищные улитки с целью истребления сельскохозяйственных улиток-вредителей.

Современные примеры того, как работает правило островов, не имеет ничего общего с эволюцией от молекулы до человека - они лишь показывают природную изменчивость, которая уже заложена внутри генов новых животных.

Идея о том, что изолированные популяции быстро приобретают адаптации в ответ на условия окружающей среды, которые ведут к эволюционной радиации и увеличенному многообразию, является ложной. Именно проблема небольших маленьких популяций с низким генетическим многообразием представляет опасность вымирания для современных организмов. Надо признать, что в некоторых случаях географическая изоляция на острове помогла некоторым, находящимся вдали от хищников видам выжить, тогда как представители этого вида на континенте исчезли. Хороший пример - короткохвостый кенгуру (квокка) с острова Роттнест, расположенного недалеко от западного побережья Австралии. Однако история также изобилует примерами вымирания генетически изолированных и уязвимых видов. Из 23 видов австралийских птиц, которые вымерли с 1788 года, 17 видов обитали на континентальных или океанических островах!

Кроме того географическая изоляция ведет к появлению подгруппы первоначальной полной популяции, которая размножается местно. Эта подгруппа не имеет всего разнообразия генов материнской популяции, и поэтому имеет более узкий ряд особенностей. Это может приводить к новой разновидности в образовании животного или растения, если оно может пережить изоляцию (не имея полного комплекса генетического разнообразия, он может и не приспособиться). Подобная географическая изоляция могла способствовать образованию подтипов в пределах сотворенных родов после библейского Потопа во времена Ноя.

Современные примеры того, как работает правило островов, не имеет ничего общего с эволюцией от молекулы до человека - они лишь показывают природную изменчивость, которая уже заложена внутри генов новых животных.

Изолированные популяции, скорее всего, приходят к вымиранию, а не знаменуют новую эру увеличенного разнообразия и радиации. Поэтому хоть правило островов и демонстрирует природную изменчивость, свойственную популяции, оно не оказывает никакой помощи эволюционистам, которым позарез необходим механизм для мифа дарвиновской эволюции.

Ссылки и примечания